Notch signaling patterns Drosophila mesodermal segments by regulating the bHLH transcription factor twist.

نویسندگان

  • Alexis Tapanes-Castillo
  • Mary K Baylies
چکیده

One of the first steps in embryonic mesodermal differentiation is allocation of cells to particular tissue fates. In Drosophila, this process of mesodermal subdivision requires regulation of the bHLH transcription factor Twist. During subdivision, Twist expression is modulated into stripes of low and high levels within each mesodermal segment. High Twist levels direct cells to the body wall muscle fate, whereas low levels are permissive for gut muscle and fat body fate. We show that Su(H)-mediated Notch signaling represses Twist expression during subdivision and thus plays a critical role in patterning mesodermal segments. Our work demonstrates that Notch acts as a transcriptional switch on mesodermal target genes, and it suggests that Notch/Su(H) directly regulates twist, as well as indirectly regulating twist by activating proteins that repress Twist. We propose that Notch signaling targets two distinct 'Repressors of twist' - the proteins encoded by the Enhancer of split complex [E(spl)C] and the HLH gene extra machrochaetae (emc). Hence, the patterning of Drosophila mesodermal segments relies on Notch signaling changing the activities of a network of bHLH transcriptional regulators, which, in turn, control mesodermal cell fate. Since this same cassette of Notch, Su(H) and bHLH regulators is active during vertebrate mesodermal segmentation and/or subdivision, our work suggests a conserved mechanism for Notch in early mesodermal patterning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HRT1, HRT2, and HRT3: a new subclass of bHLH transcription factors marking specific cardiac, somitic, and pharyngeal arch segments.

Members of the Hairy/Enhancer of Split family of basic helix-loop-helix (bHLH) transcription factors are regulated by the Notch signaling pathway in vertebrate and Drosophila embryos and control cell fates and establishment of sharp boundaries of gene expression. Here, we describe a new subclass of bHLH proteins, HRT1 (Hairy-related transcription factor 1), HRT2, and HRT3, that share high homol...

متن کامل

Notch signaling in the C. elegans embryo.

Cell-cell interactions mediated by the Notch signaling pathway occur throughout C. elegans embryogenesis. These interactions have major roles in specifying cell fates and in tissue morphogenesis. The network of Notch interactions is linked in part through the Notch-regulated expression of components of the pathway, allowing one interaction to pattern subsequent ones. The Notch signal transducti...

متن کامل

Twist and Notch negatively regulate adult muscle differentiation in Drosophila.

Twist is required in Drosophila embryogenesis for mesodermal specification and cell-fate choice. We have examined the role of Twist and Notch during adult indirect flight muscle development. Reduction in levels of Twist leads to abnormal myogenesis. Notch reduction causes a similar mutant phenotype and reduces Twist levels. Conversely, persistent expression, in myoblasts, of activated Notch cau...

متن کامل

Modulation of the notch signaling by Mash1 and Dlx1/2 regulates sequential specification and differentiation of progenitor cell types in the subcortical telencephalon.

Notch signaling has a central role in cell fate specification and differentiation. We provide evidence that the Mash1 (bHLH) and Dlx1 and Dlx2 (homeobox) transcription factors have complementary roles in regulating Notch signaling, which in turn mediates the temporal control of subcortical telencephalic neurogenesis in mice. We defined progressively more mature subcortical progenitors (P1, P2 a...

متن کامل

An evolutionarily conserved DNA architecture determines target specificity of the TWIST family bHLH transcription factors.

Basic helix-loop-helix (bHLH) transcription factors recognize the canonical E-box (CANNTG) to regulate gene transcription; however, given the prevalence of E-boxes in a genome, it has been puzzling how individual bHLH proteins selectively recognize E-box sequences on their targets. TWIST is a bHLH transcription factor that promotes epithelial-mesenchymal transition (EMT) during development and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 131 10  شماره 

صفحات  -

تاریخ انتشار 2004